Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness.
translated by 谷歌翻译
当前的场景图生成研究(SGG)着重于解决生成无偏见的场景图的长尾问题。但是,大多数偏见的方法都过度强调了尾巴谓词,并低估了整个训练的头部,从而破坏了头部谓词特征的表示能力。此外,这些头部谓词的受损特征会损害尾巴谓词的学习。实际上,尾巴谓词的推论在很大程度上取决于从头部谓词中学到的一般模式,例如“站在”上“依赖”。因此,这些偏见的SGG方法既不能在尾巴谓词上实现出色的性能,也不能满足头部的行为。为了解决这个问题,我们提出了一个双分支混合学习网络(DHL),以照顾SGG的头部谓词和尾巴,包括粗粒度的学习分支(CLB)和细粒度的学习分支(FLB) 。具体而言,CLB负责学习专业知识和头部谓词的鲁棒特征,而FLB有望预测信息丰富的尾巴谓词。此外,DHL配备了分支课程时间表(BCS),以使两个分支机构一起工作。实验表明,我们的方法在VG和GQA数据集上实现了新的最新性能,并在尾巴谓词和头部的性能之间进行了权衡。此外,对两个下游任务(即图像字幕和句子到刻画检索)进行了广泛的实验,进一步验证了我们方法的概括和实用性。
translated by 谷歌翻译
当前场景图(SGG)模型的性能受到难以弥补的谓词的严重阻碍,例如,女性与女性/站立/站立/步行。由于通用SGG模型倾向于预测头部谓词和重新平衡策略,因此偏爱尾巴类别,因此没有一个可以适当处理难以呈现的谓词。为了解决这个问题,受到细粒图像分类的启发,该图像分类的重点是区分难以弥补的对象,我们提出了一种自适应的细粒谓词学习(FGPL-A),旨在区分SGG难以区分的谓词。首先,我们引入了一个自适应谓词晶格(PL-A),以找出难以辨认的谓词,该谓词可以适应地探索与模型的动态学习步伐保持一致的谓词相关性。实际上,PL-A是从SGG数据集初始化的,并通过探索模型的当前迷你批量预测来完善。利用PL-A,我们提出了一个自适应类别区分损失(CDL-A)和一个自适应实体区分损失(EDL-A),该实体逐渐使模型的歧视过程逐渐使模型的歧视过程正规化,从而确保模型的动态学习状态,以确保平衡,有效,有效,有效,有效地进行了平衡,并确保了平衡和高效的模型。学习过程。广泛的实验结果表明,我们提出的模型不足的策略可显着提高VG-SGG和GQA-SGG数据集对基准模型的性能,最多可提高175%和76%的平均Recess@100,从而实现新的最新性能。此外,对句子到图形检索和图像字幕任务的实验进一步证明了我们方法的实用性。
translated by 谷歌翻译
零件级别的属性解析是一项基本但具有挑战性的任务,它需要区域级的视觉理解以提供可解释的身体部位细节。大多数现有方法通过添加具有属性预测头到两阶段检测器的区域卷积神经网络(RCNN)来解决此问题,其中从本地零件框中确定了身体部位的属性。但是,具有极限视觉线索的本地零件框(即仅零件外观)会导致不满意的解析结果,因为身体部位的属性高度依赖于它们之间的全面关系。在本文中,我们建议通过利用丰富的知识来识别嵌入式RCNN(KE-RCNN)来识别属性-hip)和显式知识(例如,``短裤''的一部分不能具有``连帽衫''或``衬里''的属性)。具体而言,KE-RCNN由两个新型组件,即基于隐式知识的编码器(IK-en)和基于知识的显式解码器(EK-DE)组成。前者旨在通过将部分的关系上下文编码到部分框中来增强零件级的表示,而后者则建议通过有关\ textit {part-attribute}关系的先验知识的指导来解码属性。这样,KE-RCNN就是插件播放,可以集成到任何两阶段检测器中,例如attribute-rcnn,cascade-rcnn,基于HRNET的RCNN和基于Swintransformer的RCNN。在两个具有挑战性的基准上进行的广泛实验,例如Fashionpedia和Kinetics-TPS,证明了KE-RCNN的有效性和概括性。特别是,它比所有现有方法都取得了更高的改进,在时尚Pedia上达到了3%的AP,而动力学TPS的ACC约为4%。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
As the quality of optical sensors improves, there is a need for processing large-scale images. In particular, the ability of devices to capture ultra-high definition (UHD) images and video places new demands on the image processing pipeline. In this paper, we consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution. We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms. As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method. The core components of LLFormer are the axis-based multi-head self-attention and cross-layer attention fusion block, which significantly reduces the linear complexity. Extensive experiments on the new dataset and existing public datasets show that LLFormer outperforms state-of-the-art methods. We also show that employing existing LLIE methods trained on our benchmark as a pre-processing step significantly improves the performance of downstream tasks, e.g., face detection in low-light conditions. The source code and pre-trained models are available at https://github.com/TaoWangzj/LLFormer.
translated by 谷歌翻译
Long document retrieval aims to fetch query-relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder. However, in contrast to passages or sentences, retrieval on long documents suffers from the scope hypothesis that a long document may cover multiple topics. This maximizes their structure heterogeneity and poses a granular-mismatch issue, leading to an inferior distillation efficacy. In this work, we propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers. While preserving the conventional dense retrieval paradigm, it first produces global-consistent representations crossing different fine granularity and then applies multi-granular aligned distillation merely during training. In experiments, we evaluate our framework on two long-document retrieval benchmarks, which show state-of-the-art performance.
translated by 谷歌翻译
To improve the performance of the dual-encoder retriever, one effective approach is knowledge distillation from the cross-encoder ranker. Existing works construct the candidate passages following the supervised learning setting where a query is paired with a positive passage and a batch of negatives. However, through empirical observation, we find that even the hard negatives from advanced methods are still too trivial for the teacher to distinguish, preventing the teacher from transferring abundant dark knowledge to the student through its soft label. To alleviate this issue, we propose ADAM, a knowledge distillation framework that can better transfer the dark knowledge held in the teacher with Adaptive Dark exAMples. Different from previous works that only rely on one positive and hard negatives as candidate passages, we create dark examples that all have moderate relevance to the query through mixing-up and masking in discrete space. Furthermore, as the quality of knowledge held in different training instances varies as measured by the teacher's confidence score, we propose a self-paced distillation strategy that adaptively concentrates on a subset of high-quality instances to conduct our dark-example-based knowledge distillation to help the student learn better. We conduct experiments on two widely-used benchmarks and verify the effectiveness of our method.
translated by 谷歌翻译
A common concern when a policy-maker draws causal inferences and makes decisions from observational data is that the measured covariates are insufficiently rich to account for all sources of confounding, i.e., the standard no confoundedness assumption fails to hold. The recently proposed proximal causal inference framework shows that proxy variables can be leveraged to identify causal effects and therefore facilitate decision-making. Building upon this line of work, we propose a novel optimal individualized treatment regime based on so-called outcome-inducing and treatment-inducing confounding bridges. We then show that the value function of this new optimal treatment regime is superior to that of existing ones in the literature. Theoretical guarantees, including identification, superiority, and excess value bound of the estimated regime, are established. Moreover, we demonstrate the proposed optimal regime via numerical experiments and a real data application.
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译